
Homework 0 @ 2025-08-29 14:33:01-07:00

EECS 182 Deep Neural Networks
Fall 2025 Anant Sahai and Gireeja Ranade Homework 0
This homework is due on Fri, Sep 5, 2025, at 10:59PM. A failure to complete
this homework will be deemed “insufficient engagement” and will be used to
make room in the class for students who are actually committed to doing the
work. The non-programming problems must be done by hand and scanned
in and the programming problem should have a pdf of the completed note-
book attached. Combine your scan and the pdf into a single large pdf for
submission.

1. Reflection on your learning goals at the start of the semester
Deep learning is a particularly challenging subject culturally given the state of our understanding as well
as the rapid advancements and economic/cultural/intellectual impacts of this emergent technology. You’ve
come into this class with your own individual background. Think about it and do a little online exploration
and concisely write up your response.

(a) Before doing any further reading or exploration and just based on what you know, please briefly
describe what you think your learning goals are.

(b) Open up any modern top-tier LLM-based chat system — you can use the Berkeley promotion of
Perplexity for example, or just use OpenAI’s ChatGPT, Anthropic’s Claude, Google’s Gemini, etc.
Interact with the system to have a conversation about Deep Learning. After this interaction, please
describe how — if at all — this has modified your learning goals.

(c) Now, the approach taken in this course is a reasonably intellectually conservative point of view that
tries to approach Deep Learning through a lens of understanding that leverages mathematical intuition
and models, as well as connections to the larger Machine Learning tradition, to the extent possible.
However, it is important to understand that this is not the only possible perspective. At least skim
through David Donoho’s 2024 Paper “Data Science at the Singularity” available at https://doi.
org/10.1162/99608f92.b91339ef. After reading that paper, how have you thought about
the role of this class in your learning?

(d) Finally, comment briefly about how your own understanding of deep learning can benefit from
activities that complement what we are doing in this course? What kind of guidance from your
peers and course staff do you think would be helpful?

2. Vector Calculus Review
Let x, c ∈ Rn and A ∈ Rn×n. For the following parts, before taking any derivatives, identify what the
derivative looks like (is it a scalar, vector, or matrix?) and how we calculate each term in the derivative.
Then carefully solve for an arbitrary entry of the derivative, then stack/arrange all of them to get the final
result. Note that the convention we will use going forward is that vector derivatives of a scalar (with respect
to a column vector) are expressed as a row vector, i.e. ∂f

∂x = [ ∂f∂x1
, ∂f
∂x2

, ..., ∂f
∂xn

] since a row acting on a
column gives a scalar. You may have seen alternative conventions before, but the important thing is that you
need to understand the types of objects and how they map to the shapes of the multidimensional arrays we
use to represent those types.
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(a) Show ∂
∂x(x

T c) = cT

(b) Show ∂
∂x ||x||

2
2 = 2xT

(c) Show ∂
∂x(Ax) = A

(d) Show ∂
∂x(x

TAx) = xT (A+AT )

(e) Under what condition is the previous derivative equal to 2xTA?

3. Least Squares and the Min-norm problem from the Perspective of SVD
Consider the equation Xw = y, where X ∈ Rm×n is a non-square data matrix, w is a weight vector, and y
is vector of labels corresponding to the datapoints in each row of X .

Let’s say that X = UΣV T is the (full) SVD of X . Here, U and V are orthonormal square matrices, and Σ
is an m× n matrix with non-zero singular values (σi) on the "diagonal".

For this problem, we define Σ† an n × m matrix with the reciprocals of the singular values ( 1
σi

) along the
"diagonal".

(a) First, consider the case where m > n, i.e. our data matrix X has more rows than columns (tall matrix)
and the system is overdetermined. How do we find the weights w that minimizes the error between
Xw and y? In other words, we want to solve minw ∥Xw − y∥2.

(b) Plug in the SVD X = UΣV T and simplify. Be careful with dimensions!

(c) You’ll notice that the least-squares solution is in the form w∗ = Ay. What happens if we left-
multiply X by our matrix A? This is why the matrix A of the least-squares solution is called the
left-inverse.

(d) Now, let’s consider the case where m < n, i.e. the data matrix X has more columns than rows and
the system is underdetermined. There exist infinitely many solutions for w, but we seek the minimum-
norm solution, ie. we want to solve min ∥w∥2s.t.Xw = y. What is the minimum norm solution?

(e) Plug in the SVD X = UΣV T and simplify. Be careful with dimensions!

(f) You’ll notice that the min-norm solution is in the form w∗ = By. What happens if we right-multiply
X by our matrix B? This is why the matrix B of the min-norm solution is called the right-inverse.

4. The 5 Interpretations of Ridge Regression
(a) Perspective 1: Optimization Problem. Ridge regression can be understood as the unconstrained opti-

mization problem

argmin
w

∥y −Xw∥22 + λ∥w∥22, (1)

where X ∈ Rn×d is a data matrix, and y ∈ Rn is the target vector of measurement values. What’s new
compared to the simple OLS problem is the addition of the λ∥w∥2 term, which can be interpreted as a
"penalty" on the weights being too big.
Use vector calculus to expand the objective and solve this optimization problem for w.

(b) Perspective 2: "Hack" of shifting the Singular Values. In the previous part, you should have found the
optimal w is given by

w = (XTX + λI)−1XTy

(If you didn’t get this, you should check your work for the previous part).
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Let X = UΣV T be the (full) SVD of the X . Recall that U and V are square orthonormal (norm-
preserving) matrices, and Σ is a n × d matrix with singular values σi along the "diagonal". Plug
this into the Ridge Regression solution and simplify. What happens to the singular values of
(XTX + λI)−1XT when σi << λ? What about when σi >> λ?

(c) Perspective 3: Maximum A Posteriori (MAP) estimation. Ridge Regression can be viewed as finding
the MAP estimate when we apply a prior on the (now viewed as random parameters) W. In particular,
we can think of the prior for W as being N (0, I) and view the random Y as being generated using
Y = xTW +

√
λN where the noise N is distributed iid (across training samples) as N (0, 1). At the

vector level, we have Y = XW +
√
λN. Note that the X matrix whose rows are the n different

training points are not random.
Show that (1) is the MAP estimate for W given an observation Y = y.

(d) Perspective 4: Fake Data. Another way to interpret “ridge regression” is as the ordinary least squares
for an augmented data set — i.e. adding a bunch of fake data points to our data. Consider the following
augmented measurement vector ŷ and data matrix X̂:

ŷ =

[
y
0d

]
X̂ =

[
X√
λId

]
,

where 0d is the zero vector in Rd and Id ∈ Rd×d is the identity matrix. Show that the classical OLS
optimization problem argminw ∥ŷ − X̂w∥22 has the same minimizer as (1).

(e) Perspective 5: Fake Features. For this last interpretation, let’s instead construct an augmented design
matrix in the following way:

X̌ = [X
√
λIn]

i.e. we stack X with
√
λIn horizontally. Now our problem is underdetermined: the new dimension

d+ n is larger than the number of points n. Therefore, there are infinitely many values η ∈ Rd+n for
which X̌η = y. We are interested in the min-norm solution, ie. the solution to

argmin
η

∥η∥22 s.t. X̌η = y. (2)

Show that this is yet another form of ridge regression and that the first d coordinates of η∗ form
the minimizer of (1).

(f) We know that the Moore-Penrose pseudo-inverse for an underdetermined system (wide matrix) is
given by A† = AT (AAT )−1, which corresponds to the min-norm solution for Aη = z. That is, the
optimization problem

argmin ∥η∥2s.t.Aη = z

is solved by η = A†z. Let ŵ be the minimizer of (1).
Use the pseudo-inverse to show that solving to the optimization problem in (2) yields

ŵ = XT (XXT + λI)−1y

Then, show that this is equivalent to the standard formula for Ridge Regression

ŵ = (XTX + λI)−1XTy

Hint: It may be helpful to review Kernel Ridge Form.
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(g) We know that the solution to ridge regression (1) is given by ŵr = (X⊤X + λI)−1X⊤y. What
happens when λ → ∞? It is for this reason that sometimes ridge regularization is referred to as
“shrinkage.”

(h) What happens to the solution of ridge regression when you take the limit λ → 0? Consider both
the cases when X is wide (underdetermined system) and X is tall (overdetermined system).

5. ReLU Elbow Update under SGD
In this question we will explore the behavior of the ReLU nonlinearity with Stochastic Gradient Descent
(SGD) updates. The hope is that this problem should help you build a more intuitive understanding for how
SGD works and how it iteratively adjusts the learned function.

We want to model a 1D function y = f(x) using a 1-hidden layer network with ReLU activations and no
biases in the linear output layer. Mathematically, our network is

f̂(x) = W(2)Φ
(
W(1)x+ b

)
where x, y ∈ R, b ∈ Rd, W(1) ∈ Rd×1, and W(2) ∈ R1×d. We define our loss function to be the squared
error,

ℓ
(
x, y,W(1),b,W(2)

)
=

1

2

∥∥∥f̂(x)− y
∥∥∥2
2
.

For the purposes of this problem, we define the gradient of a ReLU at 0 to be 0.

(a) Let’s start by examining the behavior of a single ReLU with a linear function of x as the input,

ϕ(x) =

{
wx+ b, wx+ b > 0

0, else
.

Notice that the slope of ϕ(x) is w in the non-zero domain.
We define a loss function ℓ(x, y, ϕ) = 1

2∥ϕ(x)− y∥22. Find the following:
(i) The location of the ‘elbow’ e of the function, where it transitions from 0 to something else.

(ii) The derivative of the loss w.r.t. ϕ(x), namely dℓ
dϕ

(iii) The partial derivative of the loss w.r.t. w, namely ∂ℓ
∂w

(iv) The partial derivative of the loss w.r.t. b, namely ∂ℓ
∂b

(b) Now suppose we have some training point (x, y) such that ϕ(x)−y = 1. In other words, the prediction
ϕ(x) is 1 unit above the target y — we are too high and are trying to pull the function downward.
Describe what happpens to the slope and elbow of ϕ(x) when we perform gradient descent in the
following cases:
(i) ϕ(x) = 0.

(ii) w > 0, x > 0, and ϕ(x) > 0. It is fine to check the behavior of the elbow numerically in this
case.

(iii) w > 0, x < 0, and ϕ(x) > 0.
(iv) w < 0, x > 0, and ϕ(x) > 0. It is fine to check the behavior of the elbow numerically in this

case.
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Additionally, draw and label ϕ(x), the elbow, and the qualitative changes to the slope and elbow
after a gradient update to w and b. You should label the elbow location and a candidate (x, y)
pair. Remember that the update for some parameter vector p and loss ℓ under SGD is

p′ = p− λ∇p(ℓ), λ > 0.

(c) Now we return to the full network function f̂(x). Derive the location ei of the elbow of the i’th
elementwise ReLU activation.

(d) Derive the new elbow location e′i of the i’th elementwise ReLU activation after one stochastic
gradient update with learning rate λ.

6. Coding Fully Connected Networks
In this coding assignment, you will be building a fully-connected neural network from scratch using NumPy.

Download the .zip file with the starter code and get it to work in either Google Colab or a local Conda
environment.

Please submit the .pdf export of only the jupyter notebook when it is completed as a part of your submis-
sion. In addition, please answer the following question:

(a) Did you notice anything about the comparative difficulty of training the three-layer net vs train-
ing the five layer net?

7. Homework Process and Study Group
Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)
(c) Roughly how many total hours did you work on this homework?

Contributors:

• Saagar Sanghavi.

• Alexander Tsigler.

• Anant Sahai.

• Jane Yu.

• Philipp Moritz.

• Soroush Nasiriany.

• Josh Sanz.

• Linyuan Gong.

• Luke Jaffe.
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