
Homework 2 @ 2025-09-12 23:12:23-04:00

EECS 182 Deep Neural Networks
Fall 2025 Anant Sahai and Gireeja Ranade Homework 2
This homework is due on Friday Sep 19 2025, at 10:59PM.

1. Optimizers as Penalized Linear Improvement with different norm penal-
ties
In lecture, you saw the locally linear perspective of a neural network and the loss by Taylor expanding the
loss around the current value of the parameters. This approximation is only very good in a near neighborhood
of those values. One way to proceed with optimization is to consider the size of the neighborhood as a
hyperparameter and to bound our update to stay within that neighborhood while minimizing our linear
approximation to the loss. You saw in lecture that the choice of norm in defining that neighborhood also
matters.

In this problem, you will work out for yourself a slightly different perspective. Instead of treating the norm
as a constraint (with the size of the acceptable norm as a hyperparameter), we can do an unconstrained
optimization with a weighted penalty that corresponds to the squared norm — where that weight is a hyper-
parameter.

At each iteration, we wish to maximize linear improvement of the objective (as defined by the dot-product
between the gradient and the update) locally regularized by a penalty on the size of the update. This can be
expressed (in traditional minimization form) as:

u = argmin
∆θ

gT∆θ︸ ︷︷ ︸
Linear Improvement

+
1

α
d(∆θ)︸ ︷︷ ︸

Distance Penalty

, (1)

where g = ∇f(θ) is the gradient of the loss, α is a scalar, and d is a scalar-output distance function
Rdim(θ) → R+.

(a) Let’s assume Euclidean distance is the norm that captures our sense of relevant neighborhoods in
parameter space. Then our objective can be:

u = argmin
∆θ

gT∆θ +
1

α
∥∆θ∥22. (2)

What is the analytical solution for u in the above problem? What standard optimizer does this
recover?

(b) Now, consider an alternative way of capturing local neighborhood size – the infinity norm over param-
eters. Recall that this is defined as ∥x∥∞ = maxi |xi|. Our objective is now:

u = argmin
∆θ

gT∆θ +
1

α
∥∆θ∥∞. (3)

What is the analytical solution for u in this case? Which optimizer does this correspond to?

Homework 2, © Faculty teaching EECS 182, Fall 2025. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Homework 2 @ 2025-09-12 23:12:23-04:00

2. Optimizers and their convergence
Consider O: a simplified Adam-style optimizer without weight decay that has iterates

θt+1 ← θt − αtMt∇ft(θt) (4)

where ft is the loss at iteration t and αt is the step size (learning rate).

Further suppose that the adaptive scaling matrix Mt is recomputed over each epoch of training and just
consists of a diagonal populated by the inverses of the square roots of the mean squared value for the
gradients during the epoch for that specific coordinate.

For this part, we have exactly n = 1 training point corresponding to the single equation

[1, 0.1, 0.01]θ = 1 (5)

with a 3-dimensional learnable parameters θ. Suppose that we start with θ0 = 0 and use squared loss
ft(θ) = (1− [1, 0.1, 0.01]θ)2.

(a) What specific vector θ would standard vanilla SGD (i.e. (4) with Mt = I and αt = α) converge
to assuming α > 0 was small enough to give convergence?

(b) What specific vector θ would the simplified version of AdamO converge to assuming appropriate
step-sizes αt > 0 to give convergence?

(c) Consider a learning approach that first did training input feature rescaling (so that each feature had
unit second-moment), then ran SGD to convergence, and then converted the solution for the rescaled
problem back to the original units. What specific vector θ would it give as its final solution (for use
in original coordinates)?

3. Coding Question: Initialization and Optimizers
In this question, you’ll implement He Initialization and Different Optimizers. You will have the choice
between two options:

Use Google Colab (Recommended). Open this url and follow the instructions in the notebook.

Use a local Conda environment. Clone https://github.com/Berkeley-CS182/cs182fa25_
public/tree/main and refer to hw02/code/README.md for further instructions.

(a) What you observe in the mean of gradient norm plot above in the above plots? Try to give an expla-
nation.

4. Visualizing features from local linearization of neural nets
In the first discussion, you trained a 1-hidden-layer neural network with SGD and visualized how the net-
work fitted the function leveraging the “elbows” of the non-linear activation function ReLU. In this question,
we are going to visualize the effective “features” that correspond to the local linearization of this network in
the neighborhood of the parameters.

We provide you with some starter code in the course repo, or you can use Google Colab. For this question,
please submit the .pdf export of the jupyter notebook when it is completed. In addition, answer the
questions below, including plots from the notebook where relevant.

Homework 2, © Faculty teaching EECS 182, Fall 2025. All Rights Reserved. This may not be publicly shared without explicit permission. 2

https://colab.research.google.com/github/Berkeley-CS182/cs182fa25_public/blob/main/hw02/code/q_optimizer_init.ipynb
https://github.com/Berkeley-CS182/cs182fa25_public/tree/main
https://github.com/Berkeley-CS182/cs182fa25_public/tree/main
hw02/code/README.md
https://github.com/Berkeley-CS182/cs182fa25_public/tree/main
https://colab.research.google.com/github/Berkeley-CS182/cs182fa25_public/blob/main/hw02/code/q_linearized_features.ipynb

Homework 2 @ 2025-09-12 23:12:23-04:00

(a) Visualize the features corresponding to ∂

∂w
(1)
i

y(x) and ∂

∂b
(1)
i

y(x) where w
(1)
i are the first hidden

layer’s weights and the b(1)i are the first hidden layer’s biases. These derivatives should be evaluated
at at least both the random initialization and the final trained network. When visualizing these features,
plot them as a function of the scalar input x, the same way that the notebook plots the constituent
“elbow” features that are the outputs of the penultimate layer.

(b) During training, we can imagine that we have a generalized linear model with a feature matrix cor-
responding to the linearized features corresponding to each learnable parameter. We know from our
analysis of gradient descent, that the singular values and singular vectors corresponding to this feature
matrix are important.
Use the SVD of this feature matrix to plot both the singular values and visualize the “principle
features” that correspond to the d-dimensional singular vectors multiplied by all the features
corresponding to the parameters.
(HINT: Remember that the feature matrix whose SVD you are taking has n rows where each row cor-
responds to one training point and d columns where each column corresponds to each of the learnable
features. Meanwhile, you are going to be plotting/visualizing the “principle features” as functions of
x even at places where you don’t have training points.)

(c) Augment the jupyter notebook to add a second hidden layer of the same size as the first hidden layer,
fully connected to the first hidden layer. Allow the visualization of the features corresponding to
the parameters in both hidden layers, as well as the “principle features” and the singular values.

5. Analyzing Distributed Training
For real-world models trained on lots of data, the training of neural networks is parallelized and accelerated
by running workers on distributed resources, such as clusters of GPUs. In this question, we will explore
three popular distributed training paradigms:

All-to-All Communication: Each worker maintains a copy of the model parameters (weights) and pro-
cesses a subset of the training data. After each iteration, each worker communicates with every other worker
and updates its local weights by averaging the gradients from all workers.

Parameter Server: A dedicated server, called the parameter server, stores the global model parameters.
The workers compute gradients for a subset of the training data and send these gradients to the parameter
server. The server then updates the global model parameters and sends the updated weights back to the
workers.

Ring All-Reduce: Arranges n workers in a logical ring and updates the model parameters by passing
messages in a circular fashion. Each worker computes gradients for a subset of the training data, splits the
gradients into n equally sized chunks and sends a chunk of the gradients to their neighbors in the ring. Each
worker receives the gradient chunks from its neighbors, updates its local parameters, and passes the updated
gradient chunks along the ring. After n−1 passes, all gradient chunks have been aggregated across workers,
and the aggregated chunks are passed along to all workers in the next n− 1 steps. This is illustrated in Fig.
1.

For each of the distributed training paradigms, fill in the total number of messages sent and the size
of each message. Assume that there are n workers and the model has p parameters, with p divisible by n.

Homework 2, © Faculty teaching EECS 182, Fall 2025. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Homework 2 @ 2025-09-12 23:12:23-04:00

Figure 1: Example of Ring All-Reduce in a 3 worker setup. Source: Mu Et. al, GADGET: Online Resource Opti-
mization for Scheduling Ring-All-Reduce Learning Jobs

Number of Messages Sent Size of each message

All-to-All p

Parameter Server 2n

Ring All-Reduce n(2(n− 1))

6. Optimization Techniques for “Bad” Objective Functions
In this coding question, you will learn about three cool techniques that can help you optimize challenging
objective functions that are hard to optimize with vanilla gradient descent.

For the purpose of understanding these techniques, we will focus on local minima in this problem. Note that
in general, local optima are not really a practical issue on most supervised learning objectives in modern
deep learning. This is because as running stochastic gradient descent with these objective functions on
overparameterized (large enough) neural networks often coverge to a global optimum (there are often many
optima due to symmetry in neural networks). If you are interested in some theoretical justifications, you
might find this paper interesting (Gradient Descent Finds Global Minima of Deep Neural Networks).

However, for objective functions that are less standard (e.g., feedback signal from human) and in reinforce-
ment learning, local minima and other things that manifest similarly can play a huge role. This coding
question teaches you some basics on how you might be able to optimize these functions.

Homework 2, © Faculty teaching EECS 182, Fall 2025. All Rights Reserved. This may not be publicly shared without explicit permission. 4

https://proceedings.mlr.press/v97/du19c/du19c.pdf

Homework 2 @ 2025-09-12 23:12:23-04:00

In particular, we will be working with the following objective function f(x, y) and the goal is to find the
best pair of (x, y) that maximizes the function.

1 0 1 2 3
1

0

1

2

3
f(x, y)

Global Optimum
Gradient Ascent Trajectory
Global Optimum
Gradient Ascent Trajectory

Figure 2: The objective function f(x, y) has many local optima causing the naive gradient ascent approach to find a
local maximum far away from the global optimum.

Implement all the TODOs in the Google Colab. Answer the written questions below.

(a) (Part 1) What do you observe from the optimization trajectory of your (x, y) parameters? Where
do your parameters converge to? Try a few different initialization values and see how the conver-
gence changes.

(b) (Part 1) What patterns do you observe from the basins of attraction visualization? How do they
relate to the sine and cosine in our objective function?

(c) (Part 1) What do you notice when the learning rate η changes? Is there a good learning rate
setting that finds the global optimum better? Is there any other way that we can do to modify
our gradient descent algorithm to overcome the local optimum issue?

(d) (Part 2) Take a close look at the global optimum for the original function (red star) and the global
optimum for the smoothed function (blue star). What do you observe as σ increases? Why? Can
you give an example where the global optimum of the smoothed function is very far from the
global optimum of the original function?

(e) (Part 3a) What do you observe when you change δ, η (learning rate) and N (the sample size for
Monte-Carlo estimate)?

(f) (Part 3b) Can you provide an intuitive explanation of why the gradient estimator works? (Hint:
which direction is the gradient estimator trying to push (x, y) into? By what magnitude?)

(g) (Part 3b) What do you observe when you change η (learning rate) and N (the sample size for
Monte-Carlo estimate)? How does it compare to the finite-different method?

(h) (Part 3c) Compare the trajectory of reparam gradient vs. policy gradient. What do you observe? Is
one more straight than the other one? Why do you think that is the case?

(i) (Part 4) How well do you expect naive gradient descent to perform on this quantized objective
function? Explain why.

(j) (Part 4) Can you use reparameterization gradient for this function? Explain why.

Homework 2, © Faculty teaching EECS 182, Fall 2025. All Rights Reserved. This may not be publicly shared without explicit permission. 5

https://colab.research.google.com/github/Berkeley-CS182/cs182fa25_public/blob/main/hw02/code/q_rl.ipynb

Homework 2 @ 2025-09-12 23:12:23-04:00

7. Homework Process and Study Group
Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework?

Contributors:

• Kevin Frans.

• Anant Sahai.

• Luke Jaffe.

• Kevin Li.

• Hao Liu.

• Sheng Shen.

• Andrew Ng.

• Linyuan Gong.

• Romil Bhardwaj.

• Qiyang Li.

• Ryan Scott.

• Ria Doshi.

Homework 2, © Faculty teaching EECS 182, Fall 2025. All Rights Reserved. This may not be publicly shared without explicit permission. 6

